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of an atom in a solid within a local-density approximation 
pseudopotential framework: reintroduction of the full nodal 
form 
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IflStitute of Physics, Academy of Sciences of the Czech Republic, CukrovamickS IO. 16253 
Pmgue 6, Czech Republic 

Received 21 September 1993, in final form 11 January 1994 

Abstract. A method for calculating allelemon wavefunctions within the pseudopotential 
framework is presented. The phase-shift technique is used to construct valence wavefunctions 
with the proper node skucture in a mre region. matching the self-consistent partial pseudo- 
charge density that has been yielded by pseudopotential calculation in a solid. Making use of 
the total pseudo-charge density and the electrostatic potential of the DseudoDotential calculation, 
the atomic-like all-electron calculation is performed. 

Pseudopotentials, eliminating the need to include core electrons and strong potentials, greatly 
simplify ab-initio electronic structure calculations and ab-initio calculations of the structural 
properties of solids (see, e.g., [ 1-61), They produce nodeless valence wavefunctiom- 
pseudo-functions-providing the correct description of bonding within pseudopotential 
formalism and reproducing all-electron electronic structure calculations with a high degree 
of accuracy. 

On the other hand, for many applications, where matrix elements between core and 
valence states are necessary, the nodeless pseudo-functions (eigenfunctions of the pseudo- 
Hamiltonian) cannot be directly employed [7,8]. The first way of getting round this problem 
has already been introduced by Van de Walle and Blochl [7]. In this paper, we present a 
procedure making it possible to include the proper node structure of originally nodeless 
valence pseudo-wavefunctions together with the core states in a fully consistent way and to 
gain the all-electron information from pseudopotential quantities. 

The method is based on the following. If the pseudopotential is generated for the cut-off 
radius Rc, then the self-consistent pseudopotential quantities are correct outside a sphere of 
radius RC surrounding an atom, and they can be used as boundary conditions to calculate 
the corresponding atom-like quantities inside this sphere. Moreover, if the pseudopotential 
is norm conserving, then the amount of pseudo-charge inside the sphere is correct, which 
yields a simple normalization condition for reconstructed valence wavefunctions with the 
proper node structure. 

The present procedure consists in accomplishing two steps. First, we perform the self- 
consistent pseudopotential calculation of the pseudo-charge density p p s ( r )  in a crystal and 
determine the spherical average of angular-momentum 1-components pps(r) with respect to 
each atom, for r < Rc, where the number of 1-components corresponds to the number of 
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angular-momentum components of atomic pseudopotential. It is obvious that the sum of 
,alps(‘) taken into account should be nearly equal to pps(r) for r < Rc. In the second step, 
we perform the self-consistent atomic-like calculation using the pps(r) as the boundary and 
normalization condition mentioned above. It differs from the standard LDA calculation of 
electronic states of an atom in three points: 
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(i) determining the boundary condition for valence radial wavefunctions, 
(ii) calculating the valence charge density and 
(iii) solving the Poisson equation. 

(i) Let @rs(r) denote the radial pseudo-function corresponding to the spherical average 
of the partial charge density which is related to a given atom: 

where I@‘s) is a self-consistent pseudo-function in a crystal and IYl,,,) denotes spherical 
harmonics. We require the atomic-like valence wavefunctions +i(r) to match 0:’ at the 
radius RA,  the ‘augmentation’ radius, which we suppose to be equal to R c .  By means of 
the logarithmic derivative, this requirement is 

(dldr)lfntrrb.~ (r)ll = (djdr) M r  @ ~ s ~ r ) I H r = ~ ,  (2) 

and it replaces the boundary condition of the radial Schrodinger equation. Since applying 
this condition is not possible directly because of numerical instabilities, the phase-shift 
technique 191 is used to calculate the radial wavefunction satisfying this boundary condition 
and having the correct number of nodes. The normalization condition for +l(r) given by 

is a consequence of the norm-conserving properry of the pseudopotential. As regards the 
core electronic states, there is no difference from the standard atomic calculation; the core 
wavefunctions are normalizable in the usual way. 

(ii) Now let us consider calculation of the charge density. For the core states, 

as in the standard atomic calculation. However, this cannot be used for the valence 
states, since (owing to the boundary condition (2)) the radial wavefunctions are (generally) 
divergent beyond the radius RA. This is not relevant to calculating the valence wavefunctions 
themselves, because the charge density outside the sphere of radius RA does not affect them 
at all. Nevertheless, the charge density in this region must be well defined with respect 
to determining the exchange-correlation potential for calculating the core states, although 
the effect of the particular shape of the charge density in the outer region upon the core 
functions is very slight. We use the simple prescription 

nilrb.i(r)t2 r < R A  

pPS[r(r, 9, bo)] sine de  dbo (5) RA c r < RM 
r z RM 

P d r )  = (7 P V ~ ( R M )  4 H  
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where RM is some maximum reasonable radius greater than RA. It should not be greater 
than one half of interatomic distance (or the ‘muffin-tin’ radius), but this point is not crucial 
at all, for the reasons described above. Since the constant value of the charge density beyond 
RM does not affect any relevant quantity except for the exchange-correlation potential used 
for calculating the core wavefunctions, which are vanishing in this region anyway, changing 
this term could result in changing the corresponding eigenvalues only, which is not relevant 
to further calculations. 

(iii) The last question that should be discussed here is calculation of the electrostatic 
(Hartree) potential VH, because we have no boundary condition for solving the Poisson 
equation in the usual way. Therefore, we make use of the linearity of this equation and 
split it into the core and the valence parts, solving the Poisson equation for each part 
separately with different boundary conditions. We calculate the ‘core Hartree’ potential 
VH as a solution of the Poisson equation with pco=, satisfying the boundary condition 

VH cM.(r) + Z,/r for r + 00 (6) 

and the ‘valence Hartree’ potential V H ” ~  as a solution with ova, inside the sphere of radius 
RA matching the spherical average of the electrostatic potential Vgs(v) taken from self- 
consistent pseudopotential calculation in a solid at the surface of the sphere: 

(7 ) PS VH d r )  = VH (r)lr=Rn 

where 

We use V i s ( r )  instead of VH “d(r )  beyond RA, i.e. we define 

VH = V,’(r) for r > RA. (9) 

Finally, we can write the total potential as 

V ( r )  = VH core + VH + VXC(P,, + ~d (10) 

where V z  denotes the LDA exchange-correlation potential, e.g. the Heddin-Lundqvist term 
as used in testing the procedure at the end of this paper. 

Accomplishing the self-consistent atomic-like calculation using the rules mentioned 
above, we obtain the atomic-like quantities matching the spherical average of pseudo- 
quantities taken from self-consistent calculation in a solid at the surface of the sphere 
of radius RA,  In particular, we obtain 

pseudo-wavefunctions with logarithmic derivatives, 

density, 

consistent pseudo-potential in a solid, and 

quantities. 

(1) the valence radial wavefunctions matching the spherical average of the corresponding 

(2) the valence charge density matching the spherical average of the pseudo-charge 

(3) the potential, the ‘valence part’ of which matches the spherical average of the self- 

(4) all the corresponding ‘core’ quantities which are self-consistent with the valence 
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It should be noted that the boundary and normalization conditions (2) and (3) for the 
valence radial wavefunction do not imply that the function $,(r) matches the ‘average’ 
function @rS(r)  continuously and smoothly at RA. These conditions ensure just matching 
the logarithmic derivatives and the same amount of charge inside the sphere. The quantity 
in question is the partial charge density. If and only if the partial charge density matches 
the partial pseudo-charge density at some radius R i ,  then the result is independent of RA 
in the neighbourhood of RI: and the wavefunctions match smoothly and continuously. This 
condition has not been taken into account in the present procedure, because the conditions (2) 
and (3) determine the wavefunctions completely, We use this condition as an independent 
criterion of relevant approximations, i.e. the very slight dependence of results on RA (or the 
ratio p,!s(RA)/$,(R~)Iz) indicates the adequacy of using spherical averages for VHs and 
P p .  

Figure 1. The reconstructed radial wavefunctions with the proper node smcture for Si (-). 
Both the pseudopotential cut-off ndius and the augmentation radius are 1.8 au. The reconstructed 
functions can be compared with the radial wavefunctions of an isolated atom (.- --) (no atomic 
function conesponds to the 3d reconstructed function). Both sets of functions are properly 
normalized with rcspect to the corresponding chars densifies. The radius of 2.22 au conerponds 
IO half the interatomic distance in Si. 

In figure 1 and table 1, we present results of testing the procedure on Si, using 
the pseudopotential generated with the phaseshift technique [9] for Rc = 1.8 au. The 
independent criterion mentioned above, i.e. the criterion of matching the radial functions 
at RA, is shown in table 1. We define the ‘amplitudes’ of pseudo-wavefunctions and 
reconstructed radial wavefunctions, aps and aR, respectively: 
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Table 1. The independent criterion indicating the adequacy of the approximations used. The 
relation between ups and uR corresponds to the relation beween the spherical average of the 
pmial pseudo-charge density and the reconsttucted parfial charge density at the augmentation 
&ius R. 

1 = 0  1 = 1  1 = 2  
R ,  
(au) 

1 so 1.758 1.748 2.005 1.952 3.137 3.138 
1.55 1.662 1.661 1.905 1.869 2.568 2.406 
I .60 1.551 1.545 1.808 1.781 2.620 2.542 
I .65 1.466 1.459 1.732 1.718 2.426 2.322 
1.70 1.389 1.375 1.635 1.616 2.095 1.899 
1.75 1.330 1.319 1.565 1.548 2.130 1.991 
1.80 (R,) 1.274 1,261 1.497 1.479 2.296 2.281 
1.85 1,227 1.215 1.441 1.427 2.158 2.113 
1.90 1.182 1,166 1.391 1.379 2.041 1.970 
1.95 1.142 1.131 1.338 1.322 2.039 1.998 
2.00 1.108 1.082 1.294 1.276 1.854 1.739 

uR #R #PS 

and 

The ratio ciPSlruR, for several augmentation radii RA,  corresponds to the factor by which the 
function @L would have to be renormalized in order to match ays smoothly and continuously 
(at the cost of losing the norm-conserving property, of course). 

In figure I ,  we show the reconstructed radial wavefunctions with the proper node 
structure, for RA = Rc = 1.8 au, together with radial wavefunctions of isolated atom. 
For other radii RA E (1.6,2.0) au, the curves are identical within the thickness of the line. 

We also tested the present procedure using the BHS [Z] pseudopotential for the self- 
consistent band-structure calculation of Si. Although the BHS pseudopotential has no sharp 
cut-off radius, the relative difference (aps - ciR)/ciPS does not exceed 5% for optimum RA.  

So far, the total crystal pseudo-charge density and the spherical average of its I -  
component has been used. Consequently, we obtain the ‘averaged’ 1-dependent node 
structure for all crystal orbitals which are effectively infinite in number. In principle, 
however, the same procedure can be used for any general k-dependent crystal orbital if we 
use a multipole expansion of p P s ( r )  instead of its spherical average. This full expansion 
of pps(r) and the k-dependent reconstruction of the node structure of each crystal pseudo- 
function T ) )  forms, within the pseudopotential framework, an approach analogous 
to the full-potential linearized augmented-plane-wave technique. 

We conclude that the present approach, which makes it possible to reconstruct the proper 
node structure of pseudo-functions in the core region, will allow us not only to evaluate the 
transition matrix elements of both the core and the valence states but also to go beyond the 
frozen-core approximation by constructing the ‘all-electron pseudopotentials’ which take 
into account the response of core states and actual s,p,d, ’ ’  electron configuration of atoms 
in solid. 

The computer codes are available from the authors on request. 



3030 J Vackrii and A &mdnek 

Acknowledgment 

This work has been supported by the Grant Agency of Czech Republic under contract 
202/93/1164. 

References 

[I] Yin M T and Cohrn M L 1982 Phys. Rev B 25 7403 
[21 Bachelet C B, Hamann D R and SchlUter M 1982 Phys. Rev. B 26 4199 
[31 Kllinman L and Bylander D M 1982 Pkys. Rev. Lex 48 1425 
[41 H a m n  D R 1989 Phys. Rev. B 40 2980 
[SI Vanderbilt D 1990 Phys. Rev. B 41 7892 
[6] Troullier N and Martins J L 1991 Phys. Rev, B 53 1993 
[71 Van de Walk C G and Bl6chl P E  1993 Phys. Rev. B 47 4244 
181 Simhnek A. Vackaf J and Wech G 1993 J. Phys.: Condens. Matter 5 867 
[9] Vacka 1 and Simhnek A 1992 SolidSrnle Commlm. 81 837 


